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The Fundamental Theorem II

We give an extension of the Erdős-Stone often called the Erdős-Stone-Simonovits theorem or the fundamental
theorem of extremal graphs.

Theorem 1 (Erdős-Stone 1946, Erdős-Simonovits, 1966). If F is a graph with chromatic number χ(F ), then

ex(n, F ) =

(
1− 1

χ(F )− 1

)
n2

2
+ o(n2).

Proof. Let F be a graph with χ(F ) = k + 1. It is enough to prove that

lim
n→∞

ex(n, F )

n2
=

1

2

(
1− 1

k

)
.

1: Find an F -free graph that matches the bound. On the other hand, also show that if the limit is bigger by
ε, then one can find something, where F is a subgraph.

Solution: Observe that the Turán graph Tk(n) is k-chromatic and thus does not
contain F and furthermore

e(Tk(n)) ∼
(

1− 1

k

)
n2

2

which gives the lower bound.

For the upper bound let us assume (for the sake of contradiction) that there is an ε > 0
and arbitrarily large graphs G that are F -free and have

e(G)

n2
>

1

2

(
1− 1

k

)
+ ε.

Then by the Erdős-Stone theorem there is a large enough G that contains a complete
multipartite graph with k + 1 classes each of size |V (F )|. Clearly F is a subgraph of
such a complete multipartite graph which is a contradiction.

Theorem 2. The unique extremal graph for the dodecahedron is a K5 connected to every vertex of a T2(n− 5).

Theorem 3. For n large enough, the extremal graph for the octahedron is a T2(n) with one class containing a
matching and the other class is C4-free.
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The structure of extremal graphs

The next theorem describes exactly what graphs have Tk(n) as their extremal graph. We need the following
definition: an edge e in a graph F is called color critical if χ(F − e) < χ(F ), i.e. if the removal of e reduces
the chromatic number of the graph.

Theorem 4 (Critical edge theorem, Simonovits). Let F be a (k+ 1)-chromatic graph. For n large enough, the
(unique) extremal graph for F is Tk(n) if and only if F has a color critical edge.

Obviously Kk+1 has a color critical edge (all edges are color critical in a complete graph), so the critical edge
theorem implies Turán’s theorem (for large n).

Proof. 2: First let us begin with a graph F with no color critical edge. Suppose for contradiction that Tk(n)
is an extremal graph and find the contradiction.

Solution: If Tk(n) is an extremal graph for F , then Tk(n) plus any edge contains F .
Thus, F minus that edge is a subgraph of Tk(n) and thus is k-chromatic, i.e., F has a
color critical edge; a contradiction.

The following claim (left as an exercise) will be helpful.

Claim 5. Let t = 2|V (F )|. And consider the F -free graph formed by Kk[t] and an extra vertex x. The degree
of x is at most (k − 1)t with equality in the case when x is connected to all vertices of Kk[t] except for those of
one class.

Now let us suppose that F has a color critical edge and let Gn be a sequence of extremal graphs for F (there
may be more than one candidate for individual values of n; pick any one).

Idea: Show, that Gn is k-colorable (for large n). And do it by finding Kk[t], show that every other vertex
satisfies Claim 5 and there will come the coloring. We will do it by counting a tricky difference of D(n).

Define
D(n) = e(Gn)− e(Tk(n)).

The graph F is (k+1)-chromatic, so it is not contained by Tk(n), so e(Gn) ≥ e(Tk(n)). Thus, by the Erdős-Stone
theorem we have that for n large enough Gn contains Kk[t].

3: Show that the Kk[t] is actually induced, not just a subrgaph.

Solution: Use the critical edge

Put S = Gn −Kk[t] and denote the number of edges between S and Kk[t] by e(S,Kk[t]). By Claim 5 we have
e(S,Kk[t]) ≤ (n− kt)(k − 1)t. Now

e(Gn) = e(Kk[t]) + e(S,Kk[t]) + e(S).

4: Clearly Tk(n) contains a Kk[t] so write Tk(n) in a similar fashion as e(Gn).

Solution: Clearly Tk(n) contains a Kk[t] and Tk(n)−Kk[t] is simply Tk(n−kt). Thus

e(Tk(n)) = e(Kk[t]) + (n− kt)(k − 1)t+ e(Tk(n− kt)).
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5: Now using the above two equations for e(Gn) and e(Tk(n)) and the fact that e(S) ≤ e(Gn−kt) (why?) show
that D(n− kt)−D(n) ≥ 0.

Solution: we get that

D(n− kt)−D(n) ≥ (n− kt)(k − 1)t− e(S,Kk[t]) ≥ 0.

6: Therefore, for all n large enough we have D(n− kt) = D(n). Why?

Solution: Looks like D(n) has an upper bound and it is not increasing.

This implies that (n− kt)(k − 1)t = e(S,Kk[t]) and thus by Claim 5 each vertex in S is adjacent all vertices of
Kk[t] except those in one class.

7: Finish the proof by coloring Gn and make some argument to show Gn = Tk(n).

Solution: Now color the vertices of Gn according to which class of Kk[t] they are not
adjacent. Observe that this coloring is proper as otherwise Gn contains F . Thus, we
have that Gn is k-colorable and by maximality we have Gn = Tk(n).

Every edge in a clique is color-critical, so the Critical edge theorem gives Turán’s theorem for large n. Further-
more, every edge in an odd cycle is color-critical, so we get the following corollary.

Corollary 6. For n large enough, the unique extremal graph for the odd cycle C2k+1 is T2(n). In particular,

ex(n,C2k+1) =

⌊
n2

4

⌋
.
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